Journal of Organometallic Chemistry, 349 (1988) 65-74
Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

Preparation and properties of unsymmetrical tetraorganotin compounds

Iain L. Marr, Daniel Rosales, and James L. Wardell *
Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB9 2UE (Great Britain)

(Received January 22nd, 1988)

Abstract

Unsymmetrical tetraorganotins, $\mathbf{R}_{2} \mathrm{R}^{1} \mathrm{R}^{2} \mathrm{Sn}\left(\mathbf{R}=\mathrm{Me}, \mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Pe}(\mathrm{Pe}=\right.$ pentyl) or $\mathrm{Ph} ; \mathrm{R}=\mathrm{Bu}, \mathrm{R}^{1}=\mathrm{Pe}, \mathrm{R}^{2}=\mathrm{Ph}$ or $\mathrm{Me} ; \mathrm{R}=\mathrm{Pe}, \mathrm{R}^{1}=\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Me}$ or Ph), $\mathrm{Bu}_{n} \mathbf{R}_{4-n} \mathrm{Sn}(n=1-3, \mathbf{R}=\mathrm{Me}$ or Pe$)$ and $\mathrm{Pe}_{2} \mathrm{R}_{2} \mathrm{Sn}(\mathrm{R}=\mathrm{Me}$ or Ph$)$ have been synthesised. Various physical properties, including mass spectra, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra, are reported.

Introduction

As part of a study on organotin compounds in the environment, we had need to prepare tetraorganotin compounds to use as standards and/or derivatives for analyses by GLC. In this paper, we report on the syntheses and some physical data for unsymmetric tetraorganotin compounds of the types, $\mathrm{R}_{n} \mathrm{R}_{4-n}^{1} \mathrm{Sn}$ and $\mathrm{R}_{2} \mathrm{R}^{1} \mathrm{R}^{2} \mathrm{Sn}$.

Experimental

Apparatus. The gas chromatographs used were a Perkin-Elmer Model F-33 GC, equipped with a flame ionization detector (F.I.D.) and a $7 \mathrm{~m} \times 0.33 \mathrm{~mm}$ ID BP-1 glass capillary column, and a Shimadzu Model GC-8A, equipped with a flame photometric detector (F.P.D.) (610 nm filter) and a $12 \mathrm{~m} \times 0.53 \mathrm{~mm}$ ID BP-1 glass capillary column. The tin analyses were carried out on a Pye Unicam Model SP-9 Atomic Absorption Spectrometer using a published procedure [1].
${ }^{1}$ H NMR spectra were obtained on a Perkin-Elmer R34 spectrometer operating at 220 MHz while a Varian CFT-20 Spectrometer was used for ${ }^{13} \mathrm{C}$ NMR spectra. Mass spectra were recorded on an AEI-Kratos M30 instrument.

Column chromatography was conducted on a $60 \mathrm{~cm} \times 4 \mathrm{~cm}$ ID column of 5% water-deactivated Florisil (Aldrich).

Materials. Tetramethyltin (99\% purity), tetrabutyltin (98\%), tributyltin chloride (95%), dibutyltin dichloride (97\%), butyltin trichloride (95\%), dimethyltin dichloride
(95%), and diphenyltin dichloride (96%) were purchased from Aldrich. Tributyltin chloride and butyltin trichloride were fractional distilled under reduced pressure and dimethyltin dichloride was recrystallised from hexane before use.

Diethyl ether was dried over sodium and distilled prior to use.

Synthesis of tetraorganotin compounds

The compounds, $\mathrm{MeBu}_{3} \mathrm{Sn}, \mathrm{Me}_{2} \mathrm{Bu}_{2} \mathrm{Sn}, \mathrm{Me}_{3} \mathrm{BuSn}, \mathrm{Bu}_{3} \mathrm{PeSn}, \mathrm{Bu}_{2} \mathrm{Pe}_{2} \mathrm{Sn}$ and $\mathrm{BuPe}_{3} \mathrm{Sn}$ ($\mathrm{Pe}=$ pentyl) were obtained from the appropriate $\mathrm{Bu}_{n} \mathrm{SnCl}_{4-n}$ and an excess of the alkyl-Grignard reagent in $\mathrm{Et}_{2} \mathrm{O} . \mathrm{Me}_{2} \mathrm{Pe}_{2} \mathrm{Sn}$ and $\mathrm{Pe}_{4} \mathrm{Sn}$ were prepared by the reaction of the pentyl-Grignard reagent (from PeBr) with $\mathrm{Me}_{2} \mathrm{SnCl}_{2}$ and SnI_{4} respectively.

General Grignard procedure. The solution of the alkyl halide in $\mathrm{Et}_{2} \mathrm{O}$ was added dropwise with stirring to a slight excess of Mg . After the addition was complete, the mixture was stirred for 15 min , before the solution of the organotin halide in $\mathrm{Et}_{2} \mathrm{O}$ was added. The mixture was stirred for 1 h , and then treated with 10% aq. $\mathrm{NH}_{4} \mathrm{Cl}$. The organic layer was separated and the aqueous layer extracted twice with $\mathrm{Et}_{2} \mathrm{O}$. The combined organic layers were collected and dried over MgSO_{4}, and the solvent was removed to leave a residue. The products were purified by passage through the Fluorisil column with hexane as eluant; appropriate fractions (10 ml) were pooled and the solvent removed. Further purification of $\mathrm{BuPe}_{3} \mathrm{Sn}, \mathrm{Me}_{2} \mathrm{Pe}_{2} \mathrm{Sn}$, and $\mathrm{Pe}_{4} \mathrm{Sn}$ was achieved by fractional distillation under reduced pressure.

Preparation of butyldimethylpentyltin from dimethyltin dichloride

Treatment of $\mathrm{Me}_{2} \mathrm{SnCl}_{2}(0.09 \mathrm{~mol})$ in $\mathrm{Et}_{2} \mathrm{O}(50 \mathrm{ml})$ with the Grignard reagent made from $\mathrm{PhI}(0.20 \mathrm{~mol})$ provided $\mathrm{Me}_{2} \mathrm{Ph}_{2} \mathrm{Sn}$; the crude product was chromatographed on the Florisil column and then distilled under reduced pressure. Iodine was added in small portions with stirring to a solution of $\mathrm{Me}_{2} \mathrm{Ph}_{2} \mathrm{Sn}(0.05 \mathrm{~mol})$ in hexane at room temperature, the reaction being followed by GLC-FID. Addition of iodine was stopped when less than 0.5% of the $\mathrm{Me}_{2} \mathrm{Ph}_{2} \mathrm{Sn}$ remained; at this stage $\mathrm{Me}_{2} \mathrm{SnI}_{2}$ was beginning to be formed. The solution was filtered through anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, the solvent removed, and the $\mathrm{Me}_{2} \mathrm{PhSnI}$ purified by distillation under reduced pressure (B.p. $144-146^{\circ} \mathrm{C} / 12$ torr; $D_{4}^{20} 1.73 ; n_{\mathrm{D}}^{25} 1.6240$). (Anal. Found: $\mathrm{Sn}, 34.0 \%$; calc: 33.7%).

A solution of $\mathrm{Me}_{2} \mathrm{PhSnI}(0.025 \mathrm{~mol})$ in $\mathrm{Et}_{2} \mathrm{O}$ was treated with the Grignard reagent made from $\mathrm{BuBr}(0.03 \mathrm{~mol})$. The product, $\mathrm{Me}_{2} \mathrm{Bu} \mathrm{PhSn}$, was purified by column chromatography and then by distillation. Treatment of $\mathrm{Me}_{2} \mathrm{BuPhSn}(0.015$ mol) in hexane with iodine (0.015 mol) gave $\mathrm{Me}_{2} \mathrm{BuSnI}$ (b.p. $96-100^{\circ} \mathrm{C} / 12$ torr). Distilled $\mathrm{Me}_{2} \mathrm{BuSnI}(0.010 \mathrm{~mol})$ was treated with the Grignard reagent made from $\mathrm{PeBr}(0.015 \mathrm{~mol})$ to give $\mathrm{Me}_{2} \mathrm{BuPeSn}$, which was purified by column chromatography.

Preparation of dibutylmethylpentyltin from dibutyltin dichloride

The compound, $\mathrm{Bu}_{2} \mathrm{Ph}_{2} \mathrm{Sn}$, obtained in 78% yield from $\mathrm{Bu}_{2} \mathrm{SnCl}_{2}(0.04 \mathrm{~mol})$ and PhMgI in $\mathrm{Et}_{2} \mathrm{O}$ (from PhI, 0.09 mol), was treated with iodine in hexane until almost all the $\mathrm{Bu}_{2} \mathrm{Ph}_{2} \mathrm{Sn}$ had reacted, as shown by GC-FID. Fractional distillation of the mixture gave pure $\mathrm{Bu}_{2} \mathrm{PhSnI}$ (b.p. $150-155^{\circ} \mathrm{C} / 12$ torr; $D_{4}^{20} 1.77$); treatment of $\mathrm{Bu}_{2} \mathrm{PhSnI}(0.025 \mathrm{~mol})$ with the pentyl-Grignard reagent from $\mathrm{PeBr}(0.03 \mathrm{~mol})$ gave $\mathrm{Bu}_{2} \mathrm{PePhSn}$ which was purified by column chromatography and then by distillation.

Table 1
Synthesised compounds: purity and analysis

Compound	Purity (\%) by GLC-FID (GLC-FPD)	Sn analysis (Found (calc.) (\%))
$\mathrm{Me}_{3} \mathrm{BuSn}$	$>99.5(98.2)$	$53.2(53.7)$
$\mathrm{Me}_{2} \mathrm{Bu}_{2} \mathrm{Sn}$	$97.4(98.1)$	$45.6(45.2)$
$\mathrm{MeBu}_{3} \mathrm{Sn}$	$96.5(96.4)$	$38.7(38.9)$
$\mathrm{Bu}_{3} \mathrm{PeSn}^{\mathrm{Bu}_{2} \mathrm{Pe}_{2} \mathrm{Sn}}$	$96.7(94.5)$	$32.9(32.9)$
$\mathrm{BuPe}_{3} \mathrm{Sn}$	$95.7(>99.5)$	$31.3(31.7)$
$\mathrm{Pe}_{4} \mathrm{Sn}$	$95.6(97.9)$	$30.6(30.5)$
$\mathrm{Me}_{2} \mathrm{Pe}_{2} \mathrm{Sn}$	$97.0(99.1)$	$29.5(29.5)$
$\mathrm{Me}_{2} \mathrm{BuPeSn}$	$>99.5(>99.5)$	$40.8(40.8)$
$\mathrm{MeBu}_{2} \mathrm{PeSn}$	$96.1(96.5)$	$42.6(42.9)$
$\mathrm{MeBuPe}_{2} \mathrm{Sn}$	$97.6(>99.5)$	$37.2(37.3)$
$\mathrm{Me}_{2} \mathrm{BuPhSn}$	$94.0(93.8)$	$35.6(35.2)$
$\mathrm{Bu}_{2} \mathrm{PePhSn}^{\mathrm{BuPe}_{2} \mathrm{PhSn}}$	$96.2(99.1)$	$41.6(42.0)$
$\mathrm{Pe}_{2} \mathrm{Ph}_{2} \mathrm{Sn}$	$93.4(97.5)$	$31.7(31.2)$

Reaction of $\mathrm{Bu}_{2} \mathrm{PePhSn}(0.010 \mathrm{~mol})$ in CCl_{4} with iodine (1 equiv.) gave $\mathrm{Bu}_{2} \mathrm{PeSnI}$ (b.p. $172-174^{\circ} \mathrm{C} / 12$ torr; $D_{4}^{20} 1.52 ; n_{\mathrm{D}}^{25} 1.5345$; Anal. Found: $\mathrm{Sn}, 27.9$; calc: 27.6%). Redistilled $\mathrm{Bu}_{2} \mathrm{PeSnI}(0.075 \mathrm{~mol})$ was treated with the Grignard reagent, made from MeI (0.01 mol) in $\mathrm{Et}_{2} \mathrm{O}$, to give $\mathrm{MeBu}_{2} \mathrm{PeSn}$, which was purified by fractional distillation under reduced pressure.

Preparation of butylmethyldipentyltin from diphenyltin dichloride

The compound $\mathrm{Pe}_{2} \mathrm{Ph}_{2} \mathrm{Sn}$ was obtained from $\mathrm{Ph}_{2} \mathrm{SnCl}_{2}(0.03 \mathrm{~mol})$ in $\mathrm{Et}_{2} \mathrm{O}$ and the reagent made from PeBr (0.07 mol); purification was achicved by column chromatography on Fluorisil. Treatment of $\mathrm{Pe}_{2} \mathrm{Ph}_{2} \mathrm{Sn}(0.025 \mathrm{~mol})$ in hexane with iodine (1 equiv.), initially at room temperature and then under reflux, gave $\mathrm{Pe}_{2} \mathrm{PhSnI}$ (b.p. $190-200^{\circ} \mathrm{C} / 12$ torr). Reaction of $\mathrm{Pe}_{2} \mathrm{PhSnI}(0.020 \mathrm{~mol})$ in $\mathrm{Et}_{2} \mathrm{O}$ with BuMgBr made from $\mathrm{BuBr}(0.025 \mathrm{~mol})$ provided $\mathrm{Pe}_{2} \mathrm{SnPhBu}$, which was purified by column chromatography on Fluorisil, and then by fractional distillation under reduced pressure. Iodine and $\mathrm{BuPe}_{2} \mathrm{PhSn}$ (both 0.021 mol) in hexane at room temperature gave $\mathrm{BuPe}_{2} \mathrm{SnI}$ (b.p. $177-180^{\circ} \mathrm{C} / 12$ torr); $\mathrm{BuPe}_{2} \mathrm{SnI}(0.0075 \mathrm{~mol})$ was treated with MeMgI made from $\mathrm{MeI}(0.01 \mathrm{~mol})$ in $\mathrm{Et}_{2} \mathrm{O}$ to give $\mathrm{MeBuPe}{ }_{2} \mathrm{Sn}$, which was column chromatographed and then fractionally distilled under reduced pressure.

The purity of all compounds were checked by both GLC-FID and GLC-FPD. Analytical and purity data of the prepared tetraorganotin compounds are listed in Table 1. Mass spectral data are given in Table 2. NMR spectral and other physical data are given in Tables 3 and 4.

Results and discussion

Series of $\mathrm{Me}_{4-n} \mathrm{Sn}$ and $\mathrm{Bu}_{n} \mathrm{Pe}_{4-n} \mathrm{Sn}$ were prepared by appropriate alkylations of $\mathrm{Bu}_{n} \mathrm{SnCl}_{4-n}$ [3] with Grignard reagents. For other tetra-organotin compounds, use was made of sequences involving both Grignard alkylations of organotin halides
Table 2
Physical data ${ }^{\text {a }}$

Compound (M)	$\text { B.p. }\left({ }^{\circ} \mathrm{C} / \text { torr }\right)$ (lit. value)	$\begin{aligned} & \hline n_{\mathrm{D}}^{25} \\ & \text { (lit. value) } \end{aligned}$	$\begin{aligned} & D_{4}^{20} \\ & \text { (lit. value) } \end{aligned}$	MS (20 eV) m/z (\%)
$\begin{aligned} & \mathrm{Me}_{4} \mathrm{Sn} \\ & (180) \end{aligned}$	$\begin{aligned} & 74-75 / 760 \\ & (76 / 760) \end{aligned}$	$\begin{gathered} 1.4390 \\ (1.4386) \end{gathered}$	$\begin{aligned} & \hline 1.29 \\ & (1.2995) \end{aligned}$	$\begin{aligned} & 165\left(100, \mathrm{Me}_{3} \mathrm{Sn}\right) ; 150\left(25, \mathrm{Me}_{2} \mathrm{Sn}\right) ; 135(28, \mathrm{MeSn}) \\ & 120(14, \mathrm{Sn}) \end{aligned}$
$\begin{aligned} & \mathrm{Me}_{3} \mathrm{BuSn} \\ & (222) \end{aligned}$	$\begin{gathered} 44-46 / 12 \\ (42-43 / 12) \end{gathered}$	$\begin{gathered} 1.4535 \\ (1.4553) \end{gathered}$	$\begin{aligned} & 1.18 \\ & (1.1830) \end{aligned}$	207(58, Me $\left.{ }_{2} \mathrm{BuSn}\right) ; 192(4, \mathrm{MeBuSn}) ; 177(2, \mathrm{Busn}) ;$ 121(13, SnH$) ; 165\left(100, \mathrm{Me}_{3} \mathrm{Sn}\right) ; 151\left(96, \mathrm{Me}_{2} \mathrm{SnH}\right)$; 135(32, MeSn)
$\begin{aligned} & \mathrm{Me}_{2} \mathrm{Bu}_{2} \mathrm{Sn} \\ & (264) \end{aligned}$	$\begin{aligned} & 50-52 / 12 \\ & (70 / 4.4) \end{aligned}$	$\begin{gathered} 1.4630 \\ (1.4640) \end{gathered}$	$\begin{aligned} & 1.12 \\ & (1.124)\left(D_{4}^{25}\right) \end{aligned}$	249(7, MeBu ${ }_{2} \mathrm{Sn}$); 207(63, $\left.\mathrm{Me}_{2} \mathrm{BuSn}\right) ; 193(18$, $\mathrm{MeBuSnH}) ; 177$ ($3, \mathrm{BuSn}$); 151(100, $\mathrm{Me}_{2} \mathrm{SnH}$); 135(33, MeSn); 121(13, SnH)
$\underset{(306)}{\mathrm{MeBu}_{3} \mathrm{Sn}}$	$\begin{gathered} 124-126 / 12 \\ (122-124 / 12) \end{gathered}$	$\begin{gathered} 1.4700 \\ (1.4680) \end{gathered}$	$\begin{aligned} & 1.09 \\ & (1.0898) \end{aligned}$	$291\left(2, \mathrm{Bu}_{3} \mathrm{Sn}\right) ; 249\left(65, \mathrm{MeBu}_{2} \mathrm{Sn}\right) ; 234\left(2, \mathrm{Bu}_{2} \mathrm{Sn}\right)$; 207(30), 193(100, MeBuSnH); $177(15, \mathrm{BuSn}) ; 151(40)$; $135(55, \mathrm{MeSn}) ; 121(23, \mathrm{SnH})$
$\begin{aligned} & \mathrm{Bu}_{4} \mathrm{Sn} \\ & (348) \end{aligned}$	$\begin{gathered} 147-149 / 12 \\ (147-152 / 12) \end{gathered}$	$\begin{gathered} 1.4735 \\ (1.4730) \end{gathered}$	$\begin{aligned} & 1.05 \\ & (1.0572) \end{aligned}$	291(66, $\left.\mathrm{Bu}_{3} \mathrm{Sn}\right)$; $235\left(62, \mathrm{Bu}_{2} \mathrm{SnH}\right)$; 179(100, $\mathrm{BuSnH} \mathrm{H}_{2}$; $\mathbf{1 2 1 (3 7 , \mathrm { SnH })}$
$\begin{aligned} & \mathrm{Bu}_{3} \mathrm{PeSn} \\ & (362) \end{aligned}$	157-159/12	1.4745	1.04	305(62, $\mathrm{Bu}_{2} \mathrm{PeSn}$); 291(21, $\mathrm{Bu}_{3} \mathrm{Sn}$); 249 (42, $\mathrm{BuPeSnH}) ; 235\left(54, \mathrm{Bu}_{2} \mathrm{SnH}\right) ;$ 193(32, PeSnH_{2}); $179\left(100, \mathrm{BuSnH}_{2}\right) ; 121(40, \mathrm{SnH})$
$\begin{aligned} & \mathrm{Bu}_{2} \mathrm{Pe}_{2} \mathrm{Sn} \\ & { }^{376)} \end{aligned}$	169-172/12	1.4750	1.06	319(62, $\left.\mathrm{BuPe}_{2} \mathrm{Sn}\right) ; 305\left(52, \mathrm{Bu}_{2} \mathrm{PeSn}\right) ; 264(10)$; 249(55, BuPeSnH); 235(17, $\left.\mathrm{Bu}_{2} \mathrm{SnH}\right) ; 179(85$, $\left.\mathrm{BuSnH}_{2}\right) ; 121(90, \mathrm{SnH})$
$\begin{aligned} & \mathrm{BuPe}_{3} \mathrm{Sn} \\ & (390) \end{aligned}$	173-175/12	1.4770	1.06	333(23, $\left.\mathrm{Pe}_{3} \mathrm{Sn}\right) ; 319\left(62, \mathrm{BuPe}_{2} \mathrm{Sn}\right) ; 263(32$, $\left.\mathrm{Pe}_{2} \mathrm{SnH}\right) ; 249(37, \mathrm{BuPeSnH})$; 193(64, PeSnH_{2}); $179\left(30, \mathrm{BuSnH}_{2}\right) ; 121(50, \mathrm{SnH})$

333(74, $\mathrm{Pe}_{3} \mathrm{Sn}$); 263(88, $\left.\mathrm{Pe}_{2} \mathrm{SnH}\right)$; 193(100, $\left.\mathrm{PeSnH}_{2}\right) ; 121(24, \mathrm{SnH})$

277(8, $\left.\mathrm{MePe}_{2} \mathrm{Sn}\right) ; 221\left(64, \mathrm{Me}_{2} \mathrm{PeSn}\right) ; 207(23$, MePeSnH); 191(4, PeSn); 165(5); 151(100, $\left.\mathrm{Me}_{2} \mathrm{SnH}\right)$; 135(33, MeSn); 121(12, SnH)

263(12, MeBuPeSn); 221(36, Me ${ }_{2} \mathrm{PeSn}$); 207(37, $\left.\mathrm{Me}_{2} \mathrm{BuSn}\right) ; 193(10, \mathrm{MeBuSnH}) ; 151\left(100, \mathrm{Me}_{2} \mathrm{SnH}\right)$; 135(35, MeSn); 121(10, SnH)

305(4, Bu ${ }_{2} \mathrm{PeSn}$); 263(62, MeBuPeSn); 249(32,
$\mathrm{MeBu}_{2} \mathrm{Sn}$); 207(52, MePeSnH); 193(100, MeBuSnH);
177(141, BuSn); 135(34, MeSn); 121(10, SnH)
319(6, $\left.\mathrm{BuPe}_{2} \mathrm{Sn}\right) ; 277\left(42, \mathrm{MePe}_{2} \mathrm{Sn}\right) ; 263(76$, MeBuPeSn); 207(100, MePeSnH); 193(74, MeBuSnH);

177(15, BuSn); 135(24, MeSn); 121(37, SnH)
325(59, BuPePhSn); 311(28, $\left.\mathrm{Bu}_{2} \mathrm{PhSn}\right) ; 305(12$, $\left.\mathrm{Bu}_{2} \mathrm{PeSn}\right) ; 269(15, \mathrm{PePhSnH}) ; 255(32, \mathrm{BuPhSnH})$; $235\left(6, \mathrm{Bu}_{2} \mathrm{SnH}\right) ; \mathbf{1 9 7}(100, \mathrm{PhSn}) ; 179\left(16, \mathrm{BuSnH}_{2}\right)$; 177(16, BuSn); 121(24, SnH)
$339\left(30, \mathrm{Pe}_{2} \mathrm{PhSn}\right) ; 325(57, \mathrm{BuPePhSn}) ; 319$ (5, $\mathrm{Bu}_{2} \mathrm{PeSn}$); 269(24, PePhSnH); 255(16, BuPhSnH); 197(100, PhSn); $179\left(6, \mathrm{BuSnH}_{2}\right) ; 177(6, \mathrm{BuSn}) ;$ 121(10, SnH)
$345\left(94, \mathrm{PePh}_{2} \mathrm{Sn}\right) ; 339\left(4, \mathrm{Pe}_{2} \mathrm{PhSn}\right) ; 275(100$, $\left.\mathrm{Ph}_{2} \mathrm{SnH}\right) ; 197(100, \mathrm{PhSn}) ; \mathbf{1 2 1 (3 0 , \mathrm { SnH })}$
1.01
(1.0159)
1.09
(1.098)
1.20
1.15
1.13
1.23
1.30
1.35
1.4765
$(1.4720)\left(n_{\mathrm{D}}^{20}\right)$
1.4665
$(1.4676)\left(n_{\mathrm{D}}^{20}\right)$
1.4715
1.4760
1.4740
1.5075
1.5105
1.5520
$192-194 / 12$
$(191 / 13)$
$119-121 / 12$
$(68-70 / 1)$
105-107/12
136-138/12
154-156/12
184-186/12
190-192/12
$235-240 / 12$
-
$\mathrm{Pe}_{4} \mathrm{Sn}$
(404)
$\mathrm{Me}_{2} \mathrm{Pe}_{2} \mathrm{Sn}$
(292)

(278)
$\mathrm{MeBu}_{2} \mathrm{PeSn}$ (320)
$\underset{(334)}{\mathrm{MeBuPe}_{2} \mathrm{Sn}}$
$\mathrm{Bu}_{2} \mathrm{PePhSn}$
(382)
$\mathrm{BuPe}_{2} \mathrm{PhSn}$
(396)
$\mathrm{Pe}_{2} \mathrm{Ph}_{2} \mathrm{Sn}$
(416)
${ }^{a}$ Ref. 2.
Table 3
${ }^{13} \mathrm{C}$ NMR ($20 \mathrm{MHz} \mathrm{CDCl}_{3}$) data (δ in $\mathrm{ppm}, . J$ in Hz)

Table 4
${ }^{1} \mathrm{H}$ NMR ($220 \mathrm{MHz} \mathrm{CDCl}_{3}$) spectral data (δ in ppm, J in Hz)

Compound	$\delta\left(J^{\left.\left.1{ }^{19} \mathrm{Sn}-{ }^{1} \mathrm{H}\right)\right)}\right.$										
	Me	Ph	Bu				Pe				
			H_{α}	$\mathrm{H}_{\boldsymbol{\beta}}$	H_{γ}	H_{8}	H_{α}	$\mathrm{H}_{\boldsymbol{\beta}}$	H_{γ}	H_{8}	H,
$\mathrm{Me}_{4} \mathrm{Sn}$	$\begin{gathered} 0.07 \\ (53) \end{gathered}$										
$\mathrm{Me}_{3} \mathrm{BuSn}$	$\begin{gathered} 0.04 \\ (51) \end{gathered}$		$\begin{gathered} 0.88 \\ (48) \end{gathered}$	1.48	1.27	0.88					
$\mathrm{Me}_{2} \mathrm{Bu}_{2} \mathrm{Sn}$	$\begin{aligned} & 0.00 \\ & (51) \end{aligned}$		$\begin{aligned} & 0.80 \\ & (48) \end{aligned}$	1.47	1.28	0.87					
$\mathrm{MeBu}_{3} \mathrm{Sn}$	$\begin{aligned} & -0.04 \\ & (51) \end{aligned}$		$\begin{aligned} & 0.80 \\ & (48) \end{aligned}$	1.47	1.28	0.84					
$\mathrm{Bu}_{4} \mathrm{Sn}$			$\begin{aligned} & 0.75 \\ & (48) \end{aligned}$	$\begin{aligned} & 1.44 \\ & (63) \end{aligned}$	1.26	0.84					
$\begin{aligned} & \mathrm{Bu}_{n} \mathrm{Pe}_{4-n} \mathrm{Sn} \\ & (n=0-3) \end{aligned}$			$\begin{aligned} & 0.76 \\ & (48) \end{aligned}$	1.45	1.26	0.86	$\begin{aligned} & 0.76 \\ & (48) \end{aligned}$	1.46	1.26	1.26	0.86
$\mathrm{Pe}_{4} \mathrm{Sn}$								1.46	1.26	1.26	0.85
$\mathrm{Me}_{2} \mathrm{Pe}_{2} \mathrm{Sn}$	$\begin{aligned} & 0.00 \\ & (51) \end{aligned}$						$\begin{aligned} & 0.80 \\ & (48) \end{aligned}$	1.50	1.28	1.28	0.87
$\mathrm{Me}_{2} \mathrm{BuPeSn}$	$\begin{aligned} & 0.02 \\ & (51) \end{aligned}$		$\begin{gathered} 0.82 \\ (48) \end{gathered}$	1.50	1.29	0.89		1.50	1.29	1.29	0.89
$\mathrm{MeBu}_{2} \mathrm{PeSn}$	$\begin{aligned} & -0.02 \\ & (51) \end{aligned}$		$\begin{aligned} & 0.82 \\ & (48) \end{aligned}$	1.49	1.31	0.90	0.82	1.49	1.31	1.31	0.90
$\mathrm{MeBuPe} \mathrm{z}^{\text {Sn }}$	$\begin{aligned} & +0.04 \\ & (51) \end{aligned}$		0.79	1.49	1.27	0.87	0.79	1.47	1.27	1.27	0.87
$\mathrm{Me}_{2} \mathrm{BuPhSn}$	$\begin{aligned} & 0.28 \\ & (53) \end{aligned}$	$\begin{aligned} & 7.50(o) \\ & 7.35(m, p) \end{aligned}$	$\begin{aligned} & 1.07 \\ & (53) \end{aligned}$	1.56	1.35	0.80					
$\mathrm{Bu}_{2} \mathrm{PePhSn}$		$\begin{aligned} & 7.43(o) \\ & 7.28(m, p) \end{aligned}$	$\begin{aligned} & 1.01 \\ & (52) \end{aligned}$	1.50	1.27	0.85	$\begin{aligned} & 1.01 \\ & (52) \end{aligned}$	1.50	1.27	1.27	0.85
$\mathrm{BuPe}_{2} \mathrm{PhSn}$		$\begin{aligned} & 7.45(o) \\ & 7.29(m, p) \end{aligned}$	$\begin{aligned} & 1.03 \\ & (50) \end{aligned}$	1.54	1.28	0.85	$\begin{aligned} & 1.03 \\ & (50) \end{aligned}$	1.54	1.28	1.28	0.85
$\mathrm{Pe}_{2} \mathrm{Ph}_{2} \mathrm{Sn}$		$\begin{aligned} & 7.45(o) \\ & 7.30(m, p) \end{aligned}$					$\begin{aligned} & 1.26 \\ & (50) \end{aligned}$	1.60	1.28	1.28	0.86

and iodine cleavage of phenyl-tin bonds [4] as illustrated by the syntheses of $\mathrm{Me}_{2} \mathrm{BuPeSn}, \mathrm{MeBu}_{2} \mathrm{PeSn}$ and $\mathrm{MeBuPe}_{2} \mathrm{Sn}$ depicted in Schemes 1-3.

Scheme 1. Reagents: (i) $2 \mathrm{PhMgI}^{\mathrm{Et}} \mathrm{Et}_{2} \mathrm{O}$: (ii) I_{2}, hexane; (iii) $\mathrm{BuMgBr}, \mathrm{Et}_{2} \mathrm{O}$; (iv) $\mathrm{PeMgBr} \mathrm{Et}_{2} \mathrm{O}$.

$\mathrm{Bu}_{2} \mathrm{SnCl}_{2} \xrightarrow{\text { (i) }} \mathrm{Bu}_{2} \mathrm{Ph}_{2} \mathrm{Sn} \xrightarrow{(\mathrm{ii})} \mathrm{Bu}_{2} \mathrm{PhSnI}$
\downarrow (iii)
$\mathrm{MeBu}_{2} \mathrm{PeSn} \stackrel{(\mathrm{v})}{(} \mathrm{Bu}_{2} \mathrm{PeSnI} \stackrel{(\mathrm{iv})}{\rightleftarrows} \mathrm{Bu}_{2} \mathrm{PePhSn}$

Scheme 2. Reagents: (i) $2 \mathrm{PhMgI}, \mathrm{Et}_{2} \mathrm{O}$; (ii) I_{2}, hexane; (iii) $\mathrm{PeMgBr}^{2} \mathrm{Et}_{2} \mathrm{O}$; (iv) $\mathrm{I}_{2}, \mathrm{CCl}_{4}$; (v) MeMgI , $\mathrm{Et}_{2} \mathrm{O}$.

$$
\begin{gathered}
\mathrm{Ph}_{2} \mathrm{SnCl}_{2} \xrightarrow{\text { (i) }} \mathrm{Pe}_{2} \mathrm{Ph}_{2} \mathrm{Sn} \xrightarrow{(\text { ii) }} \mathrm{Pe}_{2} \mathrm{PhSnI} \\
\downarrow \text { (iii) } \\
\mathrm{MeBuPe}_{2} \mathrm{Sn} \stackrel{\text { (iv) }}{\stackrel{ }{4}} \mathrm{BuPe}_{2} \mathrm{SnI} \stackrel{\text { (ii) }}{\leftrightarrows} \mathrm{BuPe}_{2} \mathrm{PhSn}
\end{gathered}
$$

Scheme 3. (i) $\mathrm{PeMgBr}, \mathrm{Et}_{2} \mathrm{O}$; (ii) I_{2}, hexane; (iii) $\mathrm{BuMgBr}, \mathrm{Et}_{2} \mathrm{O}$; (iv) MeMgI, $\mathrm{Et}_{2} \mathrm{O}$.

Products were purified by column chromatography on Fluorisil and/or fractional distillation under reduced pressure. The purity of each product was checked by both GLC-FID and GLC-FPD and was usually $>95 \%$. The GLC retention time data will be reported separately.

The mass spectra at 20 eV of the products clearly showed that scrambling of organic groups had not occurred in the preparation (or during the MS) of mixed alkyl compounds, $R_{n} R_{4-n}^{1} S n$ or $R_{2} R^{1} R^{2} S n$. In no case was the molecular ion observed in the mass spectrum, the heaviest mass ions always being triorganotin ions. For mixed tetraorganotin species, $\mathrm{R}_{n} \mathrm{R}_{4-n}^{1} \mathrm{Sn}$ and $\mathrm{R}_{2} \mathrm{R}^{1} \mathrm{R}^{2} \mathrm{Sn}$, all possible triorganotin ions were observed. It was established that the facility to lose an organic group to give a triorganotin ion was in the sequence $\mathrm{Pe}=\mathrm{Bu}>\mathrm{Me} \approx \mathrm{Ph}$; the loss of Pe and Bu groups is almost equally easy in the compounds containing both groups. From the intensities of the various trialkyltin ions, and taking into account statistical factors, the relative ease of losing the alkyl groups Me, Bu, and Pe in the mass spectra of $\mathrm{Me}_{2} \mathrm{BuPeSn}, \mathrm{MeBu}_{2} \mathrm{PeSn}$ and MeBuPe 2 Sn can be seen to be $6 / 36 / 37,4 / 31 / 32$, and $6 / 42 / 38$ respectively. Kochi and co-workers quote the relative ease of loss of Me and Bu groups to be $1 / 8$ [6], in keeping with our data. From the mass spectra of $\mathrm{BuPe}_{2} \mathrm{PhSn}$ and $\mathrm{Bu}_{2} \mathrm{PePhSn}$, similar considerations indicate the relative ease of loss of Bu, Pe, and Ph to be $30 / 29 / 5$ and 29/28/12 respectively. For $\mathrm{Me}_{2} \mathrm{BuPhSn}$, the relative ease of loss of Me, Bu, and Ph is estimated to be $8 / 100 / 8$.

In addition to triorganotin ions, other ions observed in the mass spectra were diand mono-organotin ions arising from further loss of alkyl groups. Furthermore, for butyl- and pentyl-containing tetraorganotins, hydride ions, $\mathbf{R}_{2} \mathrm{SnH}^{+}$(or $\mathrm{RR}^{1} \mathrm{SnH}^{+}$) and $\mathrm{RSnH}_{2}{ }^{+}$(by loss of an alkene fragment) were also observed.

In the ${ }^{1} \mathrm{H}$ NMR spectra of tetraalkyltins in CDCl_{3} at 220 MHz , it was possible to distinguish chemical shifts for $\mathrm{H}_{\alpha}, \mathrm{H}_{\beta}, \mathrm{H}_{\gamma}$ and H_{δ} of the butyl-tin group (viz. δ : $0.75-0.88 ; 1.44-1.50 ; 1.26-1.31$ and $0.84-0.90$) respectively and for $\mathrm{H}_{\alpha}, \mathrm{H}_{\beta}$, $\left(\mathrm{H}_{\gamma}+\mathrm{H}_{\delta}\right)$ and H_{6} of the pentyl-tin groups (viz. $\delta: 0.76-0.82 ; 1.46-1.50 ; 1.26-1.31$ and $0.85-0.90$). For phenyltrialkyltins and diphenylalkyltins, $\delta\left(\mathrm{H}_{\alpha}\right)$ values (for both butyl and pentyl groups) shift to $1.03-1.07$ and 1.26 respectively. Coupling constants, $J\left({ }^{119} \mathrm{Sn}-{ }^{1} \mathrm{H}\right)$ were ca. 51 Hz for $\mathrm{Me}-\mathrm{Sn}$ and ca. 48 Hz for $\mathrm{Bu}-\mathrm{Sn}$ and $\mathrm{Pe}-\mathrm{Sn}$ in tetraalkyltins. Phenyl substitution slightly increases these J values (by 2 Hz).

In the ${ }^{13} \mathrm{C}$ NMR (20 MHz) spectra in CDCl_{3}, it can be seen that for the series $\mathrm{Me}_{n} \mathrm{Bu}_{4-n} \mathrm{Sn}, \delta(\mathrm{Me})$ and $\delta\left(\mathrm{C}_{\alpha}\right)$ of the butyl group are increasingly shifted to lower field as n increases.

For the series, $\mathrm{Bu}_{n} \mathrm{Pe}_{4-n} \mathrm{Sn}$, there is a consistency in the chemical shift values for $\mathrm{C}_{\alpha}, \mathrm{C}_{\beta}, \mathrm{C}_{\gamma}$ and C_{δ} for $\mathrm{Bu}\left(8.94,29.47,27.58\right.$ and 13.78), respectively, and for $\mathrm{C}_{\alpha}, \mathrm{C}_{\beta}$, $\mathrm{C}_{y}, \mathrm{C}_{\delta}$ and C_{ϵ} for $\mathrm{Pe}(9.16,26.78,38.86,22.39$ and 14.11, respectively). The coupling constants $J\left({ }^{119} \mathrm{Sn}-{ }^{1} \mathrm{H}\right)$ were ca. $315,20,50$ and 0 for ${ }^{1} J,{ }^{2} J,{ }^{3} J$, and ${ }^{4} J$ respectively. Another observation was that successive phenyl substitution for alkyl groups in the tetraorganotins led to progressive shifts to higher field for both $\delta\left(\mathrm{C}_{\alpha}\right)$ (of butyl and pentyl groups) and $\delta(\mathrm{Me})$.

References

1 I.L. Marr and J. Anwar, Analyst, 107 (1982) 260.
2 H. Schumann and I. Schumann, Gmelins Handbuch der Anorganischen Chemie, Zinn-Organische Verbindungen, Springer Verlag, Berlin, Teil 1, 1975; Teil 2, 1975; Teil 3, 1976.
3 R.J. Maquire and H. Hunreault, J. Chromatogr., 209 (1981) 458.
4 R.C. Poller, Chemistry of Organotin Compounds, Logos Press, 1970; W.P. Neumann, The Organic Chemistry of Tin, Wiley and Sons, 1970; P.J. Smith and A.G. Davies, in G. Wilkinson, F.G.A. Stone and E.W. Abel, (Eds.). Comprehensive Organometallic Chemistry. The Syntheses, Reactions and Structures of Organometallic Compounds, Volume 2, Chapter 11, Pergamon Press, 1982.
5 S. Boue, M. Gielen and J. Nasielski, Bull. Soc. Chim. Belg., 77 (1968) 43.
6 S. Fukuzumi and J.K. Kochi, J. Am. Chem. Soc., 101 (1979) 5903.

